

A Double Super-Ferric Ring (DSF-MR) in the Tevatron for a Neutrino Factory

Outline

- 1. Motivation
- 2. Physics potential of long-baseline neutrino experiments
- 3. Possible detector sites for Fermilab long-baseline neutrino beams
- 4. Detector sites considered for CERN SPS neutrino beams
- 5. Proposed new Fermilab accelerator complex
- 6. Magnets for fast cycling DSF-MR accelerator
- 7. Tevatron infrastructure for use with DSF-MR
- 8. Projected cost and timeline
- 9. Summary and conclusions

Preliminary Note at:

http://tdserver1.fnal.gov/project/Nu-factory/DSF-MR.doc

Motivation

Startup of LHC in late 2007 brings end to the Tevatron ☐ ILC with its primary motivation to study Higgs must wait for Higgs discovery at LHC to determine mass reach ☐ Most theorists expect Higgs, or any other EW symmetry breaking mechanism, to appear at mass order of 1 TeV ☐ It is likely to take few years for LHC to confirm or deny existence of SM Higgs (M Higgs < 0.8 TeV) ☐ The US high-energy physics community must have an intermediate, high-profiled, accelerator based program ☐ Intermediate program should be of moderate cost, so not to affect potential ILC construction if it becomes reality ☐ Long baseline neutrino oscillation physics matches well the requirements of high-profile and cost effectiveness

Physics potential of long baseline neutrino oscillation experiments

 \diamond As limits on \triangle m(Va,V β) get smaller the baseline, L, must be increased as:

$$P(v_{\alpha} > v_{\beta}) \sim \Delta m(v_{\alpha}, v_{\beta}) \times L \times 1/E_{v_{\alpha}}$$

- At current longest baselines (750 km, or so), the interpretation of results is uncertain due to 8-fold degeneracy of theory parameters
- It has been shown recently that there exist baseline at which parameter degeneracy is suppressed, and e.g. angle Θ (νμ->νe) will be directly measured. This "magic" baseline depends only on matter density:

L magic = 32726 /
$$\rho$$
 [g/cm³] => ~ 7250 km for ρ = 4.3 g/cm³ of Earth's density profile

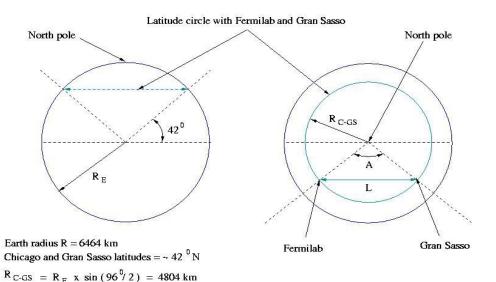
❖ In addition, a combination of results at ~7500 km and ~3000 km allows to increase parameters sensitivity by > 3 order of magnitude

Experiment	Baseline [km]	Sin ² $\boldsymbol{\theta}_{13}$	δ _{CP}	Mass hierarchy
MINOS	735	> 0.05	NO	NO
CNGS	732	> 0.02	NO	NO
New Exp.	7500 + 3000	0.00005	YES	YES

Long baseline neutrino detector sites considered for CERN neutrino beams

- Magic baseline
 - INO Indian Neutrino Observatory, 2 sites considered:
 - 1. Ramman, N 27.4, E 88.1
 - 2. Pushep, N 11.5, E 76.6

Distance to CERN for both ~ 7125 km


INO is a very serious, well documented proposal of 2006!!

- * The "~3000 km" baseline
 - Santa Cruz (Canary Islands, Spain), 2750 km
 - Longyearbyen (Iceland, Norway), 3590 km
 - Pyhaesalami (Finland), 1995 km

Potential detector sites for 7500 km baseline from Fermilab

Only in Europe (excluding permafrost region of Chukotka),
 e.g. Gran Sasso detector in Italy:
 ~750 km from CERN, and ~ 7500 km from Fermilab

Chicago longitude = $\sim 88^{\circ}$ W Gran Sasso longitude = $\sim 13^{\circ}$ 18'E

 $A = \sim 101.5^{\circ}$

 $L = 2 \times R_{C-GS} \times \sin (A/2)$ $L = \sim 7500 \text{ km}$

Henryk Piekarz, Feb. 12, 2007

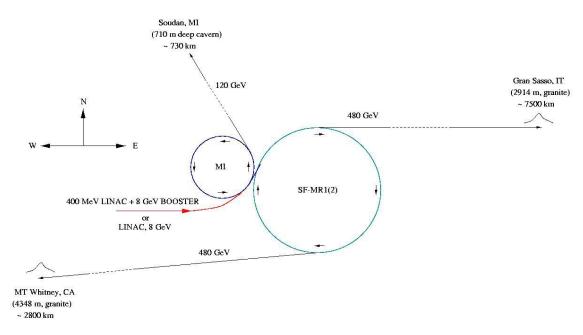
Potential detector site at ~ 3000 km

- **❖** The ~ 3000 km baseline must be found within US
- Mount Whitney: peak 4348 m, prominence ~ 3000 m, granite, non-seismic. At its foothill city of Loan Pine, CA 93545 (airport, golf, hotels) => seems to be a perfect site for a neutrino detector at 2700 km away from FNAL

Sierra Nevada Mountain Ridge with MT Whitney (center)

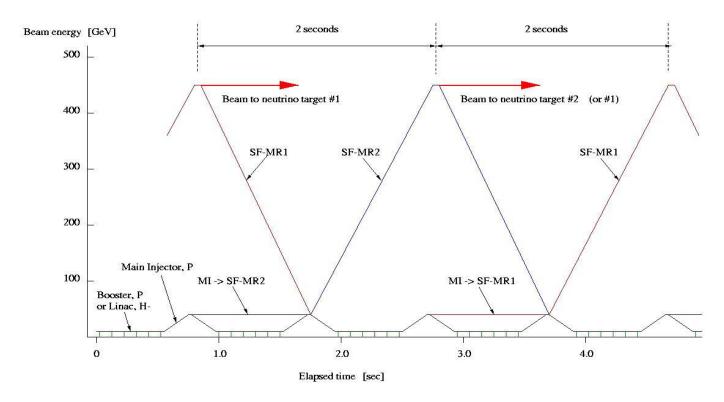
AD meeting

Henryk Piekarz


Proton beam requirements for long baseline neutrino experiments

	Proton energy [GeV]	L [km]	E v	POT/Y x 10 19	Limit sin ² θ ₁₃
FNAL NUMI	120	735	3	36	> 0.05
CERN CNGS	350	732	17.4	4.5	> 0.02

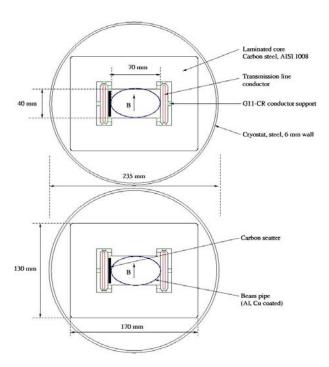
- ❖ Comparing NUMI to CNGS suggests that higher proton energy is advantageous in spite of much higher neutrino energy at CNGS adversely affecting oscillation probability
- ❖ In literature there are statements suggesting use of the highest possible proton beam momentum, but the limit projections are complicated by neutrino detection methods

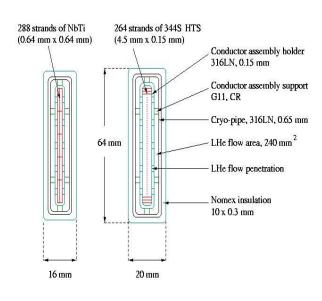

Proposed new Fermilab accelerator complex

- * Install two, 480 GeV, fast cycling accelerator rings in MR tunnel
- Extract proton beams onto two new neutrino production targets to produce interchangeably neutrino beams to Europe (e.g. Gran Sasso), and/or to Mt Whitney
- ❖ Operations for Soudan may continue while the DSF-MR is off (extraction line from the DSF-MR to NUMI is also possible)

Operation & timing sequence for DSF-MR beams

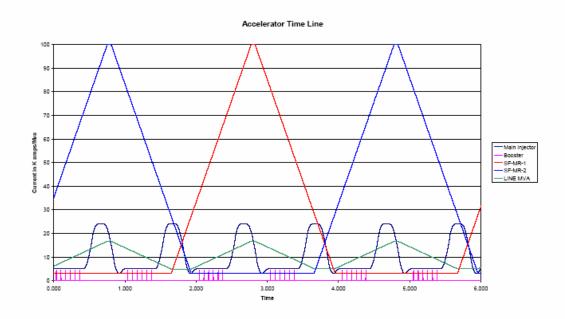
LINAC and Main Injector will be "recharged" every second, and the SF-MR1 and SF-MR2 will receive beam every 2 seconds


Proton energy and beam power on target with DSF-MR


Accelerator System	Ion Source Rep. Rate [Hz]	Pulse Length [msec]	Protons per Cycle x 10 14	Proton Energy [GeV]	Beam Power on Target [MW]
Present	15	0.09	0.45	8-120	0.40
Present + DSF-MR	15	0.09	0.90	45-480	3.20
Present + Accu. Stack + DSF-MR	15	0.09	1.66	45-450	5.90
8 GeV Linac + MI	10	1	1.5	8-120	0.5 (2.0)*

^{*} Assuming feasibility of high-duty factor H- source

DSF-MR magnets



❖ Proposed magnet and conductor options for the DSF-MR accelerator. Some details (magnetic design, Eddie currents effect, leads, power supply, cost, etc.) are presented in "LER and Fast Cycling SF-SPS", Proceedings of LUMI-06 Conference dedicated to LHC luminosity

DSF-MR power systems

Each DSF-MR accelerator ring supply ramps out of phase allowing to share common harmonic filter and feeder systems.

DSF-MR power, RF and cryogenic systems

- ❖ New power system will have to be developed for DSF-MR. Each accelerator ring supply will be +/- 2000 V ramping supply at 100,000 A current and 162 MVA peak power Some equipment exists, and the present Tevatron power transformer of 40 MVA pulsed duty can support DSF-MR
- ❖ The Main Ring is already equipped with RF system for the Tevatron, but it must be seriously upgraded to meet the increased power demand for fast cycle of the DSF-MR
- ❖ The existing Tevatron cryogenic system will be used (with some modifications) for the DSF-MR magnets. The expected DSF-MR required refrigeration power is at ~(10-20)% of the Tevatron

Neutrino production lines

- * The strong descent of the proton lines to the production targets is a significant civil engineering challenge. Most of the beam path (~1000 m), however, is a decay tube of $\pi/K \rightarrow \mu + \nu$. With 42° descending angle the neutrino target will have to be at depth of ~700 m. For comparison the Soudan detector is at ~ 700 m below the surface.
- ❖ The Tevatron may be used magnets to construct the transfer lines from DSF-MR to the neutrino production targets

Neutrino production lines

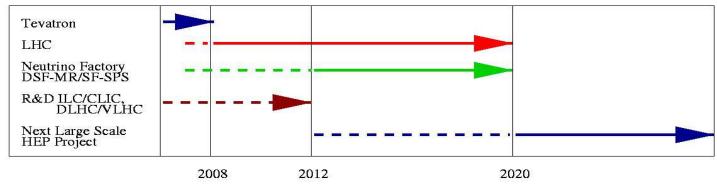
NEUTRINO BEAM LINE NEUTRINO BEAM LINE TO MT WHITNEY TO GRAN SASSO Shaft Shaft Proton beam line Proton beam line ~ 15 deg. 42 deg. 4 m 43 m ~240 m Target & horn Target & horn ~ 700 m Muon Neutrino Pion/Kaon Pion/Kaon detector beam decay tube decay tube hall (~1000 m, (~1000 m, 1.2 m dia.) 1.2 m dia.) Muon detector hall Neutrino

Sketch of neutrino production lines for 2700 and 7500 km baselines

beam

Cost estimate

Neutrino beams subsystems	[\$M]
DSF-MR	300
Neutrino production lines	200
Targets and muon detection	50
Total	550
Contingency 30%	165
Grand total	720


Timeline

Activity	Time [Y]	Lapsed time [Y]
DSF-MR design	1	1
Magnet R&D	2	2
Power supply R&D	2	2
DSF-MR magnet production	3	5
Magnet rings installation	3	5
Neutrino beam lines	2	5
Neutrino targets	2	5
Neutrino detectors	2	5
DSF-MR commissioning	1	6

Summary & Conclusions

- DSF-MR accelerator will allow:
 - open new opportunity for high expectations in particle physics research and possibly to probe particle mass scales well beyond SM with neutrino mass reach < 0.00005 eV
 - utilize and preserve the potential of Fermilab as major US/World HEP Institution for the next 2 decades
- ❖ The cost of DSF-MR is expected to be at ~ 10 % level of the projected Sub-TeV ILC, so it will not impede possible realization of the ILC, or other next HEP large scale project

